Relation Between Electric Field and Electric Potential

In electrostatics, electric field (E) and electric potential (V) are related. The electric field is defined as the negative gradient of electric potential.

Mathematical Relation:

E = - dV/dr

Derivation for a Point Charge:

Consider a point charge q placed at the origin. The electric potential at a distance r is: $V = (1 / 4^*pi^*epsilon_0)^* (q / r)$

The electric field is given by the negative gradient of potential: E = - dV/dr

Differentiating V with respect to r: $dV/dr = -(1 / 4*pi*epsilon_0) * (q / r^2)$

Thus, the electric field magnitude is: $E = (1 / 4*pi*epsilon_0) * (q / r^2)$

This result matches Coulomb's law for the electric field due to a point charge.

Conclusion:

The electric field is the negative gradient of electric potential, meaning it points in the direction of the steepest decrease in potential. This relation is fundamental in electrostatics.